aboutsummaryrefslogtreecommitdiffstats
path: root/Plugins/DbSqliteWx/chacha20poly1305.c
blob: bcb31ed86d39670e14063c6853d9fa7035e9a2e3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
/*
** This file contains th implementation for
**   - the ChaCha20 cipher
**   - the Poly1305 message digest
**
** The code was taken from the public domain implementation
** of the sqleet project (https://github.com/resilar/sqleet)
*/

#include <stdint.h>

#define ROL32(x, c) (((x) << (c)) | ((x) >> (32-(c))))
#define ROR32(x, c) (((x) >> (c)) | ((x) << (32-(c))))

#define LOAD32_LE(p)            \
  ( ((uint32_t)((p)[0]) <<  0)  \
  | ((uint32_t)((p)[1]) <<  8)  \
  | ((uint32_t)((p)[2]) << 16)  \
  | ((uint32_t)((p)[3]) << 24)  \
  )
#define LOAD32_BE(p)            \
  ( ((uint32_t)((p)[3]) <<  0)  \
  | ((uint32_t)((p)[2]) <<  8)  \
  | ((uint32_t)((p)[1]) << 16)  \
  | ((uint32_t)((p)[0]) << 24)  \
  )

#define STORE32_LE(p, v)        \
  (p)[0] = ((v) >>  0) & 0xFF;  \
  (p)[1] = ((v) >>  8) & 0xFF;  \
  (p)[2] = ((v) >> 16) & 0xFF;  \
  (p)[3] = ((v) >> 24) & 0xFF;
#define STORE32_BE(p, v)        \
  (p)[3] = ((v) >>  0) & 0xFF;  \
  (p)[2] = ((v) >>  8) & 0xFF;  \
  (p)[1] = ((v) >> 16) & 0xFF;  \
  (p)[0] = ((v) >> 24) & 0xFF;
#define STORE64_BE(p, v)        \
  (p)[7] = ((v) >>  0) & 0xFF;  \
  (p)[6] = ((v) >>  8) & 0xFF;  \
  (p)[5] = ((v) >> 16) & 0xFF;  \
  (p)[4] = ((v) >> 24) & 0xFF;  \
  (p)[3] = ((v) >> 32) & 0xFF;  \
  (p)[2] = ((v) >> 40) & 0xFF;  \
  (p)[1] = ((v) >> 48) & 0xFF;  \
  (p)[0] = ((v) >> 56) & 0xFF;

/*
 * ChaCha20 stream cipher
 */
static void chacha20_block(unsigned char out[64], const uint32_t in[16])
{
  int i;
  uint32_t x[16];
  memcpy(x, in, sizeof(uint32_t) * 16);

  #define QR(x, a, b, c, d)                           \
  x[a] += x[b]; x[d] ^= x[a]; x[d] = ROL32(x[d], 16); \
  x[c] += x[d]; x[b] ^= x[c]; x[b] = ROL32(x[b], 12); \
  x[a] += x[b]; x[d] ^= x[a]; x[d] = ROL32(x[d],  8); \
  x[c] += x[d]; x[b] ^= x[c]; x[b] = ROL32(x[b],  7);
  for (i = 0; i < 10; i++)
  {
    /* Column round */
    QR(x, 0, 4, 8, 12)
    QR(x, 1, 5, 9, 13)
    QR(x, 2, 6, 10, 14)
    QR(x, 3, 7, 11, 15)
    /* Diagonal round */
    QR(x, 0, 5, 10, 15)
    QR(x, 1, 6, 11, 12)
    QR(x, 2, 7, 8, 13)
    QR(x, 3, 4, 9, 14)
  }
  #undef QR

  for (i = 0; i < 16; i++)
  {
    const uint32_t v = x[i] + in[i];
    STORE32_LE(out, v);
    out += 4;
  }
}

void chacha20_xor(unsigned char* data, size_t n, const unsigned char key[32],
                  const unsigned char nonce[12], uint32_t counter)
{
  size_t i;
  uint32_t state[16];
  unsigned char block[64];
  static const unsigned char sigma[16] = "expand 32-byte k";

  state[ 0] = LOAD32_LE(sigma +  0);
  state[ 1] = LOAD32_LE(sigma +  4);
  state[ 2] = LOAD32_LE(sigma +  8);
  state[ 3] = LOAD32_LE(sigma + 12);

  state[ 4] = LOAD32_LE(key +  0);
  state[ 5] = LOAD32_LE(key +  4);
  state[ 6] = LOAD32_LE(key +  8);
  state[ 7] = LOAD32_LE(key + 12);
  state[ 8] = LOAD32_LE(key + 16);
  state[ 9] = LOAD32_LE(key + 20);
  state[10] = LOAD32_LE(key + 24);
  state[11] = LOAD32_LE(key + 28);

  state[12] = counter;

  state[13] = LOAD32_LE(nonce + 0);
  state[14] = LOAD32_LE(nonce + 4);
  state[15] = LOAD32_LE(nonce + 8);

  while (n >= 64)
  {
    chacha20_block(block, state);
    for (i = 0; i < 64; i++)
    {
      data[i] ^= block[i];
    }
    state[12]++;
    data += 64;
    n -= 64;
  }

  if (n > 0)
  {
    chacha20_block(block, state);
    for (i = 0; i < n; i++)
    {
      data[i] ^= block[i];
    }
  }
}

/*
 * Poly1305 authentication tags
 */
void poly1305(const unsigned char* msg, size_t n, const unsigned char key[32],
              unsigned char tag[16])
{
  uint32_t c, m, w;
  uint32_t r0, r1, r2, r3, r4;
  uint32_t s1, s2, s3, s4;
  uint64_t f0, f1, f2, f3;
  uint32_t g0, g1, g2, g3, g4;
  uint32_t h0, h1, h2, h3, h4;
  unsigned char buf[16];
  size_t i;

  c = 1 << 24;
  r0 = (LOAD32_LE(key +  0) >> 0) & 0x03FFFFFF;
  r1 = (LOAD32_LE(key +  3) >> 2) & 0x03FFFF03;
  r2 = (LOAD32_LE(key +  6) >> 4) & 0x03FFC0FF;
  r3 = (LOAD32_LE(key +  9) >> 6) & 0x03F03FFF;
  r4 = (LOAD32_LE(key + 12) >> 8) & 0x000FFFFF;
  s1 = r1 * 5; s2 = r2 * 5; s3 = r3 * 5; s4 = r4 * 5;
  h0 = h1 = h2 = h3 = h4 = 0;
  while (n >= 16)
  {
    uint64_t d0, d1, d2, d3, d4;
process_block:
    h0 += (LOAD32_LE(msg +  0) >> 0) & 0x03FFFFFF;
    h1 += (LOAD32_LE(msg +  3) >> 2) & 0x03FFFFFF;
    h2 += (LOAD32_LE(msg +  6) >> 4) & 0x03FFFFFF;
    h3 += (LOAD32_LE(msg +  9) >> 6) & 0x03FFFFFF;
    h4 += (LOAD32_LE(msg + 12) >> 8) | c;

    #define MUL(a,b) ((uint64_t)(a) * (b))
    d0 = MUL(h0,r0) + MUL(h1,s4) + MUL(h2,s3) + MUL(h3,s2) + MUL(h4,s1);
    d1 = MUL(h0,r1) + MUL(h1,r0) + MUL(h2,s4) + MUL(h3,s3) + MUL(h4,s2);
    d2 = MUL(h0,r2) + MUL(h1,r1) + MUL(h2,r0) + MUL(h3,s4) + MUL(h4,s3);
    d3 = MUL(h0,r3) + MUL(h1,r2) + MUL(h2,r1) + MUL(h3,r0) + MUL(h4,s4);
    d4 = MUL(h0,r4) + MUL(h1,r3) + MUL(h2,r2) + MUL(h3,r1) + MUL(h4,r0);
    #undef MUL

    h0 = d0 & 0x03FFFFFF; d1 += (uint32_t)(d0 >> 26);
    h1 = d1 & 0x03FFFFFF; d2 += (uint32_t)(d1 >> 26);
    h2 = d2 & 0x03FFFFFF; d3 += (uint32_t)(d2 >> 26);
    h3 = d3 & 0x03FFFFFF; d4 += (uint32_t)(d3 >> 26);
    h4 = d4 & 0x03FFFFFF; h0 += (uint32_t)(d4 >> 26) * 5;
    h1 += (h0 >> 26); h0 = h0 & 0x03FFFFFF;

    msg += 16;
    n -= 16;
  }
  if (n)
  {
    for (i = 0; i < n; i++) buf[i] = msg[i];
    buf[i++] = 1;
    while (i < 16) buf[i++] = 0;
    msg = buf;
    n = 16;
    c = 0;
    goto process_block;
  }
  *(volatile uint32_t*) &r0 = 0;
  *(volatile uint32_t*) &r1 = 0; *(volatile uint32_t*) &s1 = 0;
  *(volatile uint32_t*) &r2 = 0; *(volatile uint32_t*) &s2 = 0;
  *(volatile uint32_t*) &r3 = 0; *(volatile uint32_t*) &s3 = 0;
  *(volatile uint32_t*) &r4 = 0; *(volatile uint32_t*) &s4 = 0;

  h2 += (h1 >> 26);     h1 &= 0x03FFFFFF;
  h3 += (h2 >> 26);     h2 &= 0x03FFFFFF;
  h4 += (h3 >> 26);     h3 &= 0x03FFFFFF;
  h0 += (h4 >> 26) * 5; h4 &= 0x03FFFFFF;
  h1 += (h0 >> 26);     h0 &= 0x03FFFFFF;

  g0 = h0 + 5;
  g1 = h1 + (g0 >> 26); g0 &= 0x03FFFFFF;
  g2 = h2 + (g1 >> 26); g1 &= 0x03FFFFFF;
  g3 = h3 + (g2 >> 26); g2 &= 0x03FFFFFF;
  g4 = h4 + (g3 >> 26) - (1 << 26); g3 &= 0x03FFFFFF;

  w = ~(m = (g4 >> 31) - 1);
  h0 = (h0 & w) | (g0 & m);
  h1 = (h1 & w) | (g1 & m);
  h2 = (h2 & w) | (g2 & m);
  h3 = (h3 & w) | (g3 & m);
  h4 = (h4 & w) | (g4 & m);

  f0 = ((h0 >>  0) | (h1 << 26)) + (uint64_t) LOAD32_LE(&key[16]);
  f1 = ((h1 >>  6) | (h2 << 20)) + (uint64_t) LOAD32_LE(&key[20]);
  f2 = ((h2 >> 12) | (h3 << 14)) + (uint64_t) LOAD32_LE(&key[24]);
  f3 = ((h3 >> 18) | (h4 <<  8)) + (uint64_t) LOAD32_LE(&key[28]);

  STORE32_LE(tag +  0, f0); f1 += (f0 >> 32);
  STORE32_LE(tag +  4, f1); f2 += (f1 >> 32);
  STORE32_LE(tag +  8, f2); f3 += (f2 >> 32);
  STORE32_LE(tag + 12, f3);
}

int poly1305_tagcmp(const unsigned char tag1[16], const unsigned char tag2[16])
{
  unsigned int d = 0;
  d |= tag1[ 0] ^ tag2[ 0];
  d |= tag1[ 1] ^ tag2[ 1];
  d |= tag1[ 2] ^ tag2[ 2];
  d |= tag1[ 3] ^ tag2[ 3];
  d |= tag1[ 4] ^ tag2[ 4];
  d |= tag1[ 5] ^ tag2[ 5];
  d |= tag1[ 6] ^ tag2[ 6];
  d |= tag1[ 7] ^ tag2[ 7];
  d |= tag1[ 8] ^ tag2[ 8];
  d |= tag1[ 9] ^ tag2[ 9];
  d |= tag1[10] ^ tag2[10];
  d |= tag1[11] ^ tag2[11];
  d |= tag1[12] ^ tag2[12];
  d |= tag1[13] ^ tag2[13];
  d |= tag1[14] ^ tag2[14];
  d |= tag1[15] ^ tag2[15];
  return d;
}

/*
 * Platform-specific entropy functions for seeding RNG
 */
#if defined(__unix__) || defined(__APPLE__)
#define _GNU_SOURCE
#include <unistd.h>
#include <sys/syscall.h>

#ifdef __linux__
#include <linux/random.h>
#endif

/* Returns the number of urandom bytes read (either 0 or n) */
static size_t read_urandom(void* buf, size_t n)
{
  size_t i;
  ssize_t ret;
  int fd, count;
  struct stat st;
  int errnold = errno;

  do
  {
    fd = open("/dev/urandom", O_RDONLY, 0);
  }
  while (fd == -1 && errno == EINTR);
  if (fd == -1)
    goto fail;
  fcntl(fd, F_SETFD, fcntl(fd, F_GETFD) | FD_CLOEXEC);

  /* Check the sanity of the device node */
  if (fstat(fd, &st) == -1 || !S_ISCHR(st.st_mode)
                         #ifdef __linux__
                           || ioctl(fd, RNDGETENTCNT, &count) == -1
                         #endif
     )
  {
    close(fd);
    goto fail;
  }

  /* Read bytes */
  for (i = 0; i < n; i += ret)
  {
    while ((ret = read(fd, (char *)buf + i, n - i)) == -1)
    {
      if (errno != EAGAIN && errno != EINTR)
      {
        close(fd);
        goto fail;
      }
    }
  }
  close(fd);

  /* Verify that the random device returned non-zero data */
  for (i = 0; i < n; i++)
  {
    if (((unsigned char *)buf)[i] != 0)
    {
      errno = errnold;
      return n;
    }
  }

  /* Tiny n may unintentionally fall through! */
fail:
  fprintf(stderr, "bad /dev/urandom RNG)\n");
  abort(); /* PANIC! */
  return 0;
}

static size_t entropy(void* buf, size_t n)
{
#if defined(__linux__) && defined(SYS_getrandom)
  if (syscall(SYS_getrandom, buf, n, 0) == n)
    return n;
#elif defined(SYS_getentropy)
  if (syscall(SYS_getentropy, buf, n) == 0)
    return n;
#endif
  return read_urandom(buf, n);
}

#elif defined(_WIN32)

#include <windows.h>
#define RtlGenRandom SystemFunction036
BOOLEAN NTAPI RtlGenRandom(PVOID RandomBuffer, ULONG RandomBufferLength);
#pragma comment(lib, "advapi32.lib")

static size_t entropy(void* buf, size_t n)
{
  return RtlGenRandom(buf, n) ? n : 0;
}

#else
# error "Secure pseudorandom number generator unimplemented for this OS"
#endif

/*
 * ChaCha20 random number generator
 */
void chacha20_rng(void* out, size_t n)
{
  static size_t available = 0;
  static uint32_t counter = 0xFFFFFFFF;
  static unsigned char key[32], nonce[12], buffer[64];
  wx_sqlite3_mutex* mutex;
  size_t m;
    
  mutex = wx_sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PRNG);
  wx_sqlite3_mutex_enter(mutex);
  while (n > 0)
  {
    if (available == 0)
    {
      if (counter == 0xFFFFFFFF)
      {
        if (entropy(key, sizeof(key)) != sizeof(key))
          abort();
        if (entropy(nonce, sizeof(nonce)) != sizeof(nonce))
          abort();
        counter = 0;
      }
      chacha20_xor(buffer, sizeof(buffer), key, nonce, ++counter);
      available = sizeof(buffer);
    }
    m = (available < n) ? available : n;
    memcpy(out, buffer + (sizeof(buffer) - available), m);
    out = (unsigned char *)out + m;
    available -= m;
    n -= m;
  }
  wx_sqlite3_mutex_leave(mutex);
}